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1 Abstract

Embodied Artificial Intelligence (Embodied AI) enables robots to perceive and in-

teract with their environments, with Vision-Language Navigation (VLN) as one of the

most critical downstream tasks where robots are required to follow language instruc-

tions to reach target locations. Current VLN research mainly uses physically simplified

simulators and low-mobility wheeled robots. These approaches fail to match the com-

plex real-world conditions such as uneven terrains. This project aims to advance VLN by

introducing Recurrent-VLN-Bert-Isaac, a novel imitation learning-based model archi-

tecture tailored for quadruped robots, and the VLN-Go2-Matterport dataset, a novel

VLN dataset for navigation in high-fidelity indoor environments. This dataset enhances

accessibility for researchers in Computer Vision and Natural Language Processing, and

to bridge the gap between research and real-world deployment. Our promising experi-

mental results demonstrate that the model effectively learns navigation policies from the

dataset that are transferable to simulators. Additionally, We also explored LLM-based

approaches, detailed in the Appendix. Together, this work contributes important and

meaningful tools and insights to Embodied AI.

Code: https://github.com/Kenn3o3/FYP-Navigator (Actively Maintained)
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3 Introduction

3.1 Embodied AI

Figure 3.1: Overview of Embodied AI: Embodiment Types, Associated Tasks, and Real-
World Applications

Imagine you are in a new house, and you are asked to find the oven. Most of us would

explore the house and navigate to the kitchen, where ovens are often located. We can

easily perform this task using common sense. Robots, on the other hand, do not have

common sense. Instead, they perceive the their environment through numerical data—for

example, images from onboard cameras represented as 2D matrices or point clouds from

lidar scanners expressed as sets of coordinate points. Embodied Artificial Intelligent(EAI)

Agent aims to interpret these perception into environmental understanding, and then

embody the understanding on robot agents to perform actions to accomplish specific

tasks. As illustrated in Figure 3.1, different types of embodiment allow robots to tackle

various tasks and support a range of real-world applications.
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3.2 Existing Problems and Project goal

Internal Models
Memory

Decision-Making

Observations

Actions 

Challenge 

Partial Observability

Challenge 

Physics Grounding

Goal-Driven

Task-Driven

• Point-Goal Navigation 
(PointNav)

• Image-Goal Navigation 
(ImageNav)

• Object-Goal Navigation 
(ObjectNav)

• Embodied Question 
Answering (EQA)

• Vision-Language 
Navigation (VLN)

• …

Navigation Task Anatomy

Discretizes the environment into 3D 
grids for map-based navigation.

Map-based

Highlights rooms and floors as 
nodes with connecting edges for 

graph-based navigation.

Graph-based

Utilizes latent embeddings from 
historical perceptions

Latent Representation Based

Utilize World models such as LLMs 
to decide navigation actions

World Model-based

Figure 3.2: Overview of Navigation Task.

This project focuses on studying Vision-Language Navigation (VLN) algorithms within

the context of Embodied AI. There are two reasons for selecting this task. First, VLN

covers core components of Embodied AI, including perception, memory, planning, and

multi-modality reasoning, as shown in Figure 3.2, making it an ideal task for exploring the

foundational elements of this field. Second, VLN stands out as one of the most powerful

and important downstream tasks in EAI. A VLN agent can be deployed in diverse real-

world applications requiring navigating and commands ordering, such as autonomous

vehicles [1], personal assistants [2], rescue robots [3], and beyond.

With the rise of foundation models, ongoing research explores training or fine-tuning

large foundation models for navigation tasks [4, 5]. However, many of these approaches

test foundation models on low mobility (low degree-of-freedom, or DoF) wheeled robots

within simulator platforms such as Habitat [6], Matterport3D Simulator [7] and AI2THOR

[8], which often simplify physics to speed up training. These methods, while efficient,

overlook real-world physics and complex terrains. To develop a general embodied agent

capable of working in complex real-world environments, it is essential to evaluate its per-
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formance on agile robots—such as quadrupeds—in high-fidelity simulators with realistic

physics, like Nvidia Isaac Sim [9]. To this end, we propose a novel architectures for a

quadruped VLN agent on the Isaac Sim platform: an Imitation Learning based architec-

ture called Recurrent-VLN-Bert-Isaac.

Concurrently, there is growing interest among researchers from Computer Vision (CV)

and Natural Language Processing (NLP) in studying VLN. However, our extensive re-

search reveals that existing resources are not easily accessible or well-suited for newcomers

to the field. Thus, a key mission of this project is to bridge the gap between Embodied

AI and CV research by introducing a novel dataset called VLN-Go2-Matterport. These

contributions aim to facilitate easier entry into VLN and Embodied AI research for both

robotics and CV researchers.

Our Contributions: First, we formulated Vision-Language Navigation (VLN) into

a Computer Vision-like problem and released the VLN-Go2-Matterport dataset to the

public together with a customizable collection pipeline. Second, we propose a novel

latent representation-based architecture called Recurrent-VLN-Bert-Isaac for the problem.

Lastly, we even conducted experiments on an LLM-based architecture for VLN, analyzing

its performance and sharing our insights into the future directions.



4 Literature Review

4.1 Task-Driven Navigation Tasks

Task-driven navigation tasks typically require the robotic agent to understand lan-

guage questions (e.g., Is there a water bottle on my desk in my Bedroom) or language

instruction (e.g., go to my bedroom) and navigate to a place (e.g., Bedroom) to accomplish

an instruction (e.g., successfully navigate to the bedroom), or provide the solution to the

task (e.g., answer "yes"). They can be mainly categorized into language Instruction-based

and question-answering-based.

4.1.1 Language Instruction Based Navigation

Vision-and-Language Navigation (VLN), along with the Room-to-Room (R2R) bench-

mark proposed in the same paper [10], is the first task requiring a robotic agent to navigate

in an unknown environment by following linguistic navigation instructions, figure 4.1(b)

shows different types of instructions defined by the paper. Extended from this task,

subsequent tasks, including Cooperative Vision-and-Dialog Navigation (CVDN) [11], are

proposed to tackle language ambiguity issues. Specifically, CVDN tasks allow the navi-

gator to ask the oracle (humans) for clues during navigation. However, both VLN and

CVDN chose wheeled robots as the navigation agents and evaluated results on a non-

physic-based simulator.

10
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Bed room
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Natural Language
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Noninteractive
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Figure 4.1: Figure from [12] showing an overview of Vision Language Navigation. (a)
Interaction between agent, human and environment. (b) Types of language instructions.

4.1.2 Question Answering Based Navigation Tasks

Unlike VLN, the Embodied Question Answering (EQA) task [13] does not directly

require a navigation agent to follow a linguistic instruction. Instead, a question is pro-

vided, and the agent should navigate around the environment and find clues to answer

the question. Different types of questions are illustrated in figure 4.2. This task can bet-

ter evaluate the language understanding ability of embodied agents and thus has gained

significant research attention since the breakthrough of LLMs; for example, NaviLLM

[4] achieved state-of-the-art on the CVDN benchmark by selecting Vicuna-7B-v0 [14], a

GPT-4 [15] based instruction-tuned model as the base model to infer exploration actions.

Single Objective
Question: What room is the vase 
located in?

Multiple Objectives Multi-agent
Question: Is there a washing 
machine in the house?

: A1 : A2 : A3

ANSWER

Interaction
Question: Are there any apples 
in the fridge?

Knowledge-based
Question: Is there an object in the living 
room used to lower the temperature?

Episodic Memory

Object States
Question: Could someone be watching 
TV in the living room?

Question: Is the dinner table the 
same color as the TV cabinet?

Action: 
open the fridge

TV   
on

curtain  
withdrawn

air conditioner   
on

Answer: Living room. Answer: No. Answer: Yes. Answer: No.

Answer: It is mounted on the wall above 
the cabinets, directly across from the stove.

Answer: Yes.

Question: Where is the clock?

Answer: Yes.

turn 
right

turn 
right

turn 
right

move 
forward

move 
forward

turn 
left

...

...

Exploring...

Episodic 
History

move 
forward

Figure 4.2: Figure from [12] showing an overview of Embodied Question Answering. The
blocks at the bottom show different types of questions that can be asked.
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4.2 LLM/VLM-Driven Navigation Methods

Numerous methods use LLMs or VLMs to predict navigation actions by reasoning over

textual or multimodal representations of the environment. They internalize environmental

knowledge through pretraining on internet-scale data and infer actions via in-context

learning. Figure 4.3 shows an overview of the architecture of an LLM-based navigation

system.

Figure 4.3: Figure showing an overview of an LLM/VLM-based navigation system.

For example, NavGPT [16] converts historical observation during navigation and in-

structions into a text prompt, enabling an LLM to autoregressively predict the next

action. Similarly, Zheng et al. [17] fuse visual features with textual prompts (e.g., task

instructions) in a VLM to generate actions for tasks such as vision-language navigation

(VLN) and Embodied Question Answering (EQA).

These approaches avoid explicit spatial mapping by maintaining state information

in textual context tokens or hidden embeddings. Partial observability is mitigated by

dynamically updating prompts with new observations (e.g., camera frames), while unob-

served environmental aspects (e.g., occluded rooms) are inferred through the pre-trained

world knowledge and commonsense reasoning of LLMs and VLMs.
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4.3 Latent Representation-based Navigation Methods

In dynamic environments, Implicit latent memory offers an efficient solution by en-

coding historical observations in compact and latent representations. Figure 4.4 shows an

overview architecture of such a system.

Figure 4.4: Figure showing an overview of a Latent representation-based navigation sys-
tem.

For instance, Zhu et al. [18] learn a joint visual-textual embedding for dialog-based

navigation. By applying cross-modal attention to both image features and language inputs

and processing the features through a Long Short-Term Memory(LSTM) module [19],

their system infers navigation actions directly from historical perceptual and textual cues

rather than relying on an explicit map. Furthermore, Bono et al. [20] train an agent to

learn a task-agnostic, actionable representation of scenes. Similarly, Moghaddam et al.

[21] introduce the Foresight Imagination (ForeSIT) module, which enables an agent to

imagine a latent representation of a future state that leads to success. By conditioning

the policy on this imagined future state during training, the agent learns to navigate more

effectively toward the goals.

These methods rely on recurrent or transformer-based networks to encode sequences of

inputs into latent states, handling partial observability in a compact form. However, as we

dive deep into the experiments, challenges arise when long-term consistency is required.



5 VLN-Go2-Matterport Dataset

Textual Instructions

e.g., “Go straight past the pool. Walk 
between the bar and chairs.  Stop 

when you get to the corner of the bar.  
That's where you will wait.”

VLN-CE-Isaac Dataset

Expert Paths

Scenes (.usd file)

PD Controller

Locomotion Policy

Action Control
VLN-Go2-Matterport Dataset

t = 20 * k

Action taken

(actions.txt : line k)

Depth Maps

(./depths/depth_k.npy)

RGB Images

(./rgbs/rgb_k.npy)

Action Space

Turn Left Move ForwardTurn Right

… … …

(Turn Right) (Move Forward) (Turn Right) (Turn Left)

VLN-Go2-Matterport Dataset Pipeline

viewpoints

Figure 5.1: Figure showing the collection pipeline for the VLN-Go2-Matterport Dataset

Existing VLN datasets can be broadly classified into two types—image-based and

3D-based. Image-based datasets represent environments as topological graphs of pre-

captured images. They restrict agents to perform translative actions (e.g., turn left, turn

right, move forward) and perceive fixed viewpoints. Due to the discreteness in scenes and

actions, they lack adjustability for embodied agents like quadruped robots, which require

continuous motion and camera perspectives (e.g., tilted views) that reflect their limb-

based dynamics. Therefore, these datasets are typically used only for learning high-level

planning and are infeasible for training end-to-end policies for agile robots.

On the other hand, 3D-based datasets provide continuous navigation environments

in simulators, but training end-to-end policies that account for environmental dynamics

is still computationally impractical. To address these limitations, we propose the VLN-

Go2-Matterport dataset, which discretizes continuous environments while capturing

14
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visual observations from a quadruped robot’s perspective, offering a feasible platform for

training end-to-end imitation learning based VLN policies for agile robots in a continuous

environment. The dataset collection pipeline is illustrated in figure 5.1 and will be detailed

in the next section.

5.1 Dataset Description

The VLN-Go2-Matterport dataset is designed for training and evaluating models on

Vision Language Navigation (VLN) tasks involving quadruped robots. It collects actions

and perspectives of an expert Unitree Go2 robot when it navigates indoor environments

reconstructed from the Matterport dataset [7], rendered in Isaac Lab. Each episode in the

dataset corresponds to a VLN navigation task where the robot follows an expert path,

capturing visual observations and discrete actions. A pre-trained low-level policy manages

the locomotion part of the expert robot, while high-level navigation decisions are recorded

as discrete actions, making the dataset suitable for end-to-end imitation learning in VLN.

Specifically, each episode contains:

• A natural language instruction (e.g., “Go to the kitchen and find the red chair”),

sourced from the VLN-CE-Isaac benchmark.

• A sequence of RGB images captured from the Go2’s camera.

• Corresponding depth maps, with the properties shown in table 5.1.

• Discrete actions taken by the Go2 (“Move forward”, “Turn left”, “Turn right”).

Table 5.1: Summary statistics for depth maps. All values are in meters.
Statistic Value

Minimum 0.04
Maximum 39.36
Mean 2.02
Standard Deviation 1.68
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5.2 Collection Pipeline

Figure 5.1 illustrates the collection pipeline. The dataset is collected via Isaac Lab,

using environments from the VLN-CE-Isaac benchmark dataset [22]. A Proportional-

Derivative (PD) controller guides the Unitree Go2 robot along expert paths while a pre-

trained low-level policy executes velocity commands. The process is outlined below:

1. PD Controller:

• Selects discrete actions to follow the expert path.

• For a robot at position r = [xr, yr, zr] with orientation quaternion q = [qw, qx, qy, qz],

and a target point t = [xt, yt, zt] ahead on the expert path (look-ahead distance

= 2 points), compute the relative position in the world frame: ∆p = t− r.

• Convert the quaternion q to a rotation matrix R (Mathematical details of how

it is done are listed in Appendix 9.1).

• Transform to the robot’s body frame using the rotation matrix R: ∆pbody =

RT∆p.

• Calculate the desired yaw: θd = tan−1
(

∆pbody[1]

∆pbody[0]

)
.

• Compute the desired yaw rate: ωd = Kp · θd, where Kp =
0.5
π

.

• Select an action based on ωd:

– If |ωd| ≤ wthreshold (default 0.05 rad/s): “Move forward”.

– If ωd > wthreshold: “Turn left”.

– If ωd < −wthreshold: “Turn right”.

2. Action Execution:

• Map actions to velocity commands: “Move forward” → (0.6, 0, 0), “Turn left”

→ (0, 0, 0.5), “Turn right” → (0, 0,−0.5) (linear x, y, angular z in m/s or

rad/s). Use a pre-trained locomotion policy to make Go2 follow the velocity

commands.
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• Repeat each action for 20 simulation steps, executed by the pre-trained low-

level locomotion policy.

3. Data Collection:

• Every 20 simulation steps, collect:

– RGB image from the camera (saved as PNG).

– Depth map (saved as NumPy array).

– The discrete action taken.

4. Episode Termination:

• End the episode when the robot is within 1 meter of the goal (Euclidean dis-

tance in the x-y plane) or after 3200 steps.

• Save data only for successful episodes to ensure valid navigation trajectories.

869 episodes are collected from this pipeline for this project.



6 Methods

IMPORTANT: The entire navigation system is complex, and showing how to set it

up is not the primary focus of this project. Therefore, we have released the full code on

GitHub, with detailed instructions to guide users in configuring the system and environ-

ment for their research, and replicating the training and testing processes. The repository

will be continuously maintained and improved, ensuring it remains a valuable community

resource beyond this project.

6.1 Problem Setup and Notations

This work develops a quadruped robot agent to address the Vision-Language Naviga-

tion (VLN) task. In each navigation episode, the agent receives a language instruction

I specifying a target location. At every simulation time step t = 0, 1, 2, . . . , the agent

observes an RGB image Ot from its onboard camera and executes an action at ∈ A, where

A = “Move Forward” , “Turn Left”, “Turn Right”. The objective is for the sequence of ac-

tions to guide the agent to a position sufficiently close to the target location, at which

point the episode is deemed successful. Examples of language instructions I include:

• “Walk across the room and wait at the far end of the bar.”

• “Walk out of the bedroom through the open door into the hallway. Turn the corner

and walk into the dining area. Pass the dining table and walk into the living room

area towards the television. Stop near the chair and open sliding doors to outside.”

• “Go out of the room you’re in. Turn left. Go past the dining room and into the

living room. Wait right by the coffee table.”

18
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6.2 Recurrent-VLN-BERT-Isaac

Language Instruction
[“[CLS]”, “Go”, “straight”, “past”, “the”, “pool”, “Walk”, “between”, …, “wait”, “[SEP]”, “[pad]” , …, “[pad]” ]

BertEmbeddings Position Embeddings +

x 9

𝑸, 𝑲, 𝑽

…

Bert Self-Attention + FFN Layer Resnet-18 (Pretrained) DepthCNN

+

t = kt = k

Observe

+
𝑸𝑲,𝑽

update

Multi-Layer Cross Attention + Self Attention (LXRTX Layer x4)

Pooling Linear Layer
“Turn Left”,   Turn Right”,   “Move Forward”

Action Logits

Teacher Forcing,
The loss is computed independently 
for each time step.

*Training:

Low-Level Locomotion Policy

Figure 6.1: Architecture of Recurrent-VLN-BERT-Isaac

The Recurrent-VLN-BERT-Isaac model is inspired by the Recurrent-VLN-BERT [23]

and PREVALENT [24] frameworks, originally developed for Vision-and-Language Navi-

gation (VLN) tasks with reinforcement learning in image-based matterport environments

[25]. We used a similar architecture but for imitation learning, where the agent learns

to predict expert actions directly from RGB and depth observations at each navigation

step. Unlike Recurrent-VLN-BERT, which processes multiple viewpoints to inform navi-

gation decisions, Recurrent-VLN-BERT-Isaac focuses on a single ego-centric observation

per step, making this model more adaptable to various sensor hardware.

6.2.1 Architecture

The architecture of Recurrent-VLN-BERT-Isaac, illustrated in Figure 6.1, integrates

language and visual inputs through a transformer-based network.

Initialization Step: The language instruction (e.g., “Go to the kitchen”) is processed

only once at the beginning of each episode. Firstly, the instruction is tokenized using

BertTokenizer from HuggingFace, padded to a fixed length (e.g., 80 tokens), and then
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transformed into BertEmbeddings, which are concatenated with position embeddings, and

passed through the BertLayer module to generate 768-dimensional language embeddings.

Elang = BertLayer(BertEmbeddings(tokenized_instruction)),

These embeddings include a special [CLS] token that summarizes the instruction. The

embeddings except for the [CLS]’s one are computed just once at the start and serve as

the foundation for the entire navigation episode. Following [23], the [CLS] token, derived

from the initial language embeddings, acts as the state (a dynamic representation of the

instruction with respect to observation over steps). the embedding for the [CLS] token

does not remain static; rather, it is updated at each subsequent simulation inference step

to incorporate new information (by attending to visual information) from the environment.

Visual Processing

Visual inputs are processed using two specialized feature extractors:

• RGB Feature Extractor: A pre-trained ResNet-18 model, extracting 512-dimensional

features from RGB images. Adaptive average pooling is used to ensure spatial in-

variance. The equation is represented as:

fRGB = ResNet18(RGB_image),

where fRGB ∈ R512.

• Depth Feature Extractor: A CNN with three convolutional layers, followed by

group normalization and ReLU activations, extracts 512-dimensional features from

depth maps. Notably, Depth inputs are standardized via bilinear interpolation to

improve the training stability, The equation is represented as:

fdepth = DepthCNN(standardized_depth_map),
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where fdepth ∈ R512.

The RGB and depth features are concatenated into a 1024-dimensional visual feature:

fvis = [fRGB, fdepth] ∈ R1024.

This vector is then projected to Evis via:

Evis = LayerNorm(Wvisfvis + bvis),

where Evis ∈ R1×1×768, and Wvis ∈ R1024×768, bvis ∈ R768 are learnable parameters.

By adding the depth information as input, the model can identify spatial patterns, en-

hancing navigation robustness and generalization in environments, even in novel settings,

since depth is a more general expression of space than rgb.

Fusion and State Update

Multimodal fusion is performed within the LXRTXLayer [26], which implement cross-

attention between language and visual features. Following [23], the state is initialized

with the [CLS] token from the language embeddings and updated recurrently at each

step. The update process involves:

1. Concatenating the previous state with the current visual features:

St = [E
[CLS]
lang ,Evis,t],

where St ∈ R1×2×768.

2. Applying cross-attention to integrate visual representation:

S′
t = CrossAttention(St,Elang).
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3. Performing self-attention and feed-forward operations to further refine the state:

S′′
t = SelfAttention(S′

t), S′′′
t = FeedForward(S′′

t ).

4. Performing Pooling on the state:

pt = tanh(Wpool · S′′′
t + bpool)

This process iterates until the simulation ends.

Action Prediction

We use a linear layer as classification head to map the 768-dimensional pooled state

obtained from the [CLS] token to a 3-dimensional logit vector, representing probabilities

over the action space: “Move forward” (0), “Turn left” (1), and “Turn right” (2). Action

at at step t is computed as:

at = argmax(softmax(Wactionpt + baction)),

where Waction ∈ R768×3, and baction ∈ R3 are the parameters of the action head.

6.2.2 Training

The training process follows an imitation learning paradigm.

Data Preparation

We use our previously proposed VLN-Go2-Matterport to train the model, It comprises

869 episodes, each contains:

• An instruction (e.g., “Go to the kitchen”) in instructions.txt.

• A sequence of RGB images in rgbs/.
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• Corresponding depth maps in depths/.

• Expert actions seperated by ’new lines’ in actions.txt.

Episodes are split into training (80%) and validation (20%) sets.

Batch Generation

Batches are constructed with a default size of 2 (due to limited GPU resources). RGB

and depth images are loaded dynamically instead of pre-loaded, they are also transformed

(normalized for RGB, standardized for depth) to optimize memory efficiency.

Loss Calculation

The model is trained using a cross-entropy loss between predicted action logits and

ground truth actions. Since each episodes have different sequence length, we add masking

to exclude padded steps:

L = − 1∑
i,t Mi,t

∑
i,t

Mi,t logP (ai,t|si,t),

where Mi,t is the mask for batch i at step t, P (ai,t) is the predicted probability of the

correct action, and si,t is the state. Episodes are padded and the loss is averaged over

only valid steps via the mask, ensuring robustness to different sequence lengths.

Optimization

We use the AdamW optimizer (learning rate 10−5) with a cosine annealing scheduler

(100 steps, minimum learning rate 0) to minimize the loss. To stabilize training, we per-

form Gradient clipping with a norm of 40; checkpoints are saved every 100 iterations, and

we select the best model based on validation loss. A teacher-forcing strategy is employed,

where the model uses the ground truth observations from the dataset at every step and

compares the action predictions. This approach potentially results in compounding errors,

which is one of the limitations of this architecture.
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Inference

For each step:

1. Visual features are fused with the previous state.

2. The updated state is pooled, and action logits are computed.

3. The action with the highest probability is selected via argmax.

6.2.3 Dataset Evaluation

We train with 10,000 epochs and get the model with the lowest validation loss. Figure

6.3 and figure 6.2 show the training loss and validation loss of the first 1800 epochs.

Figure 6.2: Training loss in the first 1800 epochs

Figure 6.3: Validation loss in the first 1800 epochs

The model that yields the highest validation has an accuracy of 70.38% across all 869

episodes.
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In-depth Evaluation

We evaluate the behavior and performance of Recurrent-VLN-Bert-Isaac at various

stages of training, specifically focusing on attention and action predictions. To ensure

consistency across different model checkpoints, we evaluate results from a single episode.

Figure 6.4: Model in-depth analysis, as the model is trained progressively (from top to
bottom). It shows state-to-instruction attention score(Left), action logits (Middle) and
state-to-vision attention score (right)

In figure 6.4, we examine how the model’s attention to the instruction and visual inputs

evolves over time during training, and how these attention patterns influence its action
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predictions. Specifically in the figure, the State-to-Instruction Cross-Attention cap-

tures how the state token attends to different parts of the instruction over time. It is com-

puted by averaging attention scores over transformer heads from the last LXRTXLayer’s

visual attention module. On the other hand, the State-to-Visual Self-Attention mea-

sures the attention weight from the state token to the visual token within the visual

self-attention layer.

We observe that in the initial stage of training (1000 epochs), "Move Forward" is the

dominant action to pick. After analyzing the dataset, we determined that this is because

"Move Forward" is the dominant labeled action. Therefore, picking "Move Forward" will

result in a higher chance of being correct. In the later stage (after 3000 epochs), figure 6.5

illustrates the action distribution across the episodes, validating the statement. Spikes are

observed in state-visual attention around the timesteps where changes of actions are re-

quired, indicating that the model is relying on visual information to determine its actions.

Finally, at the late stage of training (8000 epochs), serious overfitting can be observed

from the action probabilities graph. Another observation is that state-to-instruction at-

tention over training attends less to words such as "on", "of", "across", "enter" in the

instructions, and attends more to semantically rich words such as "bedroom".

Figure 6.5: Dataset Action Distribution
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6.2.4 Simulator Evaluation

Most importantly, we need to test how the model performs in the simulator on an

actual robot. So, following how we collect the data in VLN-Go2-Matterport, we replace

the Ground-Truth PD-Controller model with the Recurrent-VLN-Bert-Isaac. We set the

inference period to be 3Hz (once per 20 simulation steps) to reduce the computation

overhead and to be compatible with the period set to obtain the training dataset. We

expect that the result will be worse than the dataset result since in the actual simulation,

all visual observations across simulation steps are novel despite being trained with the

same scenes since the angles and position PD controller captures would not be completely

identical every time. We tested the model in the first 10 environments and obtained test

results in table 6.1.

Episode Outcome Progress
0 Failure 0.16
1 Failure 0.00
2 Failure 0.18
3 Success 1.00
4 Success 1.00
5 Failure 0.47
6 Failure 0.22
7 Failure 0.22
8 Success 1.00
9 Success 1.00

Overall Success Rate 0.40
Average Progress 0.53

SPL (Success weighted by (normalized inverse) Path Length) 0.40

Table 6.1: Test Results on the first 10 episodes

Please refer to the figure 6.6. We have released a simulation test demo on YouTube

(click here) for a couple of interesting episodes. In general, Recurrent-VLN-Bert-Isaac

succeeds in picking the right actions in the first few time steps. However, It often fails

in environments that require multiple 90-degree turns, showing that it cannot memorize

well and robustly for long navigation paths. One problem, as mentioned, is compounding

errors. Since the training dataset size is small, it does not generalize well enough to

https://youtu.be/NNzy9uUmPq8
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completely novel settings. For example, when we simulate the same episode in Isaac Sim

multiple times, each time the periodic depth images and RGB images differ, making each

simulation run a novel test.

However, from the demo of episode 10, it appears that the model is capable of per-

forming actions that align with the target doorway or hallway. One possible reason is

the addition of depth features. For example, it may discover a pattern from the training

dataset that some actions are to align with the deepest part of the depth map.

It tells a very promising possibility. The model is trained with very limited (869)

episodes and is able to identify paths from novel views according to the instructions and

the images. With a larger training dataset, the model can generalize better to novel

settings and be more robust. However, as we will mention in the next section, data

scaling may not be the right path to a true generalist navigation model.

Figure 6.6: Demonstration of trajectories taken on different episodes. YouTube video for
episode 10: link

https://youtu.be/NNzy9uUmPq8
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6.2.5 Failure Analysis

In Episode 0, the agent was supposed to:

1. Turn left and move forward until reaching the doorway on the left.

2. Turn left continuously by 90 degrees to align itself with the doorway.

3. Continue the navigation procedure through the doorway.

The model successfully navigated to the doorway on the left. However, instead of

executing a full 90-degree left turn to align with the doorway, it only turned left slightly

and continued moving forward. This resulted in the agent hitting the door in front of it

rather than passing through the doorway.

As noted in section 6.2.3 and illustrated in Figure 6.5, the training dataset has a

significant imbalance favoring the action “Move Forward”. This bias could be a cause of

such error.

Moreover, the model uses a single [CLS] token-based state feature, updated at each

step, as the local memory. This approach may not effectively capture the global features,

such as the topological structure of the environments, making it more difficult to localize

itself, especially in environments like episode 0, which requires multiple turnings.

6.2.6 Limitations and Challenges

Overfitting. We used a very small dataset to train the model, which potentially resulted

in overfitting for the same or similar scenes within the dataset. This can, on the other

hand, show that the model can learn more generalized strategies once we obtain a much

larger dataset.

Compounding Errors. Since the model adopts a teacher-forcing imitation learning

approach at every single step of learning, it results in compounding errors, which happen

in the inference time when the model makes the first mistake and fails to correct itself

on the right track. This limitation happens because we only store a "local memory,"
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which is a single CLS token-based state feature updated at every step, without a global

memory such as a topological graph. However, as we tested with a topological graph

implementation (Appendix 9.3), the fps in the Isaac Sim Simulator instantly dropped a

lot. This could be solved with better hardware or a more efficient way to implement

topological graph data structure, such as the one used in MemoNav [27]; we leave this to

the future.

Sim-to-real gap exists. Despite using real-world reconstructed environments for this

project, the environments still show faulty and still exist a really large difference from the

environments in the real world, making sim-to-real transfer challenging.

Action Bias. The actions may be biased toward “Move Forward” due to dataset action

imbalance.

Attention Bottleneck. There may exist an attention bottleneck since we assumed a

maximum length for all language instructions (80 tokens).

Hardware Constraints. To save time for training and inference, the model infers at

3Hz action frequency, making it less precise in highly dynamic environments.
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7.1 LLMs for VLN

Many works already incorporate LLMs for VLN tasks, as mentioned in the literature

review. Although LLMs contain web-scale knowledge and could be promising for this task,

we provided a case study in Appendix 9.2 showing that hallucination in LLMs is still a

severe limitation. One way to make LLMs more robust is to allow them to incorporate

robust spatial information, such as depth maps. We have also experimented with this by

directly feeding depth maps to LLMs. Yet, the results are still very disappointing.

7.2 Spatial-Temporal Reasoning

In this work, we try to add the spatial component by adding a depth map CNN feature

to the transformer-based Recurrent-VLN-Bert-Isaac model. Currently, spatial reasoning

is a topic of significant interest and shows promise, yet much remains to be explored.

7.3 World Models and VLA Models

Recent studies focus on two directions: state-centric world models and vision language

action (VLA) models. However, training these models requires massive datasets and GPU

resources.

7.4 Are pre-trained models the future of Embodied AI?

The real world is highly dynamic, and current approaches mainly rely on scaling models

with training data. However, the problem is: can we capture enough data for a generalist

31
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embodied agent? If there is not enough training data, there is always something new to

learn. Could there be another learning paradigm, such as continual learning?



8 Conclusion

This project significantly enhances Vision-Language Navigation (VLN) by introduc-

ing Recurrent-VLN-Bert-Isaac, a novel model designed for quadruped robots, and the

VLN-Go2-Matterport dataset for navigation in high-fidelity indoor environments. Ex-

perimental results confirm that the model is able to learn navigation policies transferrable

to high physics fidelity simulators, while our exploration of LLMs-based approaches

highlights their potentials and challenges.
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9 Appendix

9.1 Quaternion to Rotation Matrix Conversion

Please refer to The SciPy Documentation and How to Convert a Quaternion to a

Rotation Matrix for more details.

A unit quaternion q = [qw, qx, qy, qz] can be converted into a 3x3 rotation matrix R

that performs the same rotation on 3D vectors. The conversion formula is:

R =


1− 2(q2y + q2z) 2(qxqy − qzqw) 2(qxqz + qyqw)

2(qxqy + qzqw) 1− 2(q2x + q2z) 2(qyqz − qxqw)

2(qxqz − qyqw) 2(qyqz + qxqw) 1− 2(q2x + q2y)


This matrix R is orthogonal (RTR = I) with a determinant of 1.

The formula arises from the quaternion rotation operation:

v′ = q · v · q∗

where:

• v = [0, vx, vy, vz] is the vector to be rotated, represented as a pure quaternion,

• q∗ is the conjugate of q, given by q∗ = [qw,−qx,−qy,−qz],

• · denotes quaternion multiplication.

The resulting matrix form is more computationally efficient for transforming vectors

via Rv, making it ideal for real-time applications.

In Python, the respective function call with scipy.spatial.transform.Rotation:
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from s c ipy . s p a t i a l . t rans form import Rotation

ro t = Rotation . from_quat ( [

robot_quat [ 1 ] , # q_x

robot_quat [ 2 ] , # q_y

robot_quat [ 3 ] , # q_z

robot_quat [ 0 ] # q_w

] )

rot_matrix = rot . as_matrix ( )

9.2 LLM case study

Apart from the Latent Representation-based Recurrent-VLN-Bert-Isaac, we have also

created an LLMs-based architecture with Qwen VL and Qwen Max for this task. However,

it has failed with all 10 episodes we tested. below, we have attached a fail case showing the

prompt (automatically generated), response, and action taken for the LLM Architecture

for further investigation. The code is also released in Github for study.

Since the case study involves AI-generated navigation reasoning text, to avoid AI

detection in this report, we put a link here which re-directs to the pdf file of the LLM

case study. The code that runs the LLM architecture in the simulator and generates the

report is in here.

9.3 Topological Graph

The implementation of the topological graph. The code was designed for a panoramic

camera view; here, we adapted this for an ego-centric camera view from Isaac Sim.

https://1drv.ms/b/c/7c29b3d8450f09f4/EdEwzcga46BLraWBpk6zzMQBrVL7p2LUtBnbpTSo59Rnwg?e=dUcd2t
https://github.com/Kenn3o3/MCoT-LLM-VLN
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Algorithm 1 Topological Graph Construction
1: Initialize empty graph G with capacity M = 100
2: while agent explores environment do
3: Extract visual embedding ft ← CNN(It, Dt)
4: Get current pose (pt, qt) from simulator
5: if first frame then
6: G.add_node(0, ft, pt, qt) {Initialize root node}
7: else
8: Compute similarity α← cosine(ft, Fprev)
9: if α < Timg (e.g., 0.8) then

10: νnew ← G.add_node(t, ft, pt, qt)
11: G.add_edge(νprev, νnew)
12: else
13: G.update_node(νprev, ft)
14: end if
15: end if
16: νprev ← νcurrent {Track last localized node}
17: end while
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